中国企业报集团主管主办

中国企业信息交流平台

微博 微信

前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(一)

2025-07-11 14:30 来源:中国企业网 次阅读
 
前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(一)

一、 引言:传统理论的突破者——激子倍增

光伏技术作为可再生能源的核心方向,其能量转换效率始终是研究重点。在早期科学家的认知中,一个光子通常只能激发单个电子-空穴对(激子),对应单结硅基太阳电池的理论效率上限为33%[1]。然而,激子倍增(multiple exciton generation,MEG)现象[2,3]的发现打破了这一瓶颈——特定无机物量子点(如硫化铅)或有机半导体材料(如并五苯)中,单个高能光子可产生多个激子,实现载流子倍增效应,理论上可将光伏效率提升至44%以上[4]。下面将介绍载流子倍增技术的核心原理——激子分裂。

二、激子倍增技术的核心——激子分裂

202507111311281543027541.png


图1 无机量子点(a)和有机物(b)的激子倍增原理

激子倍增是指单个高能光子激发MEG材料时产生一个高能激子,然后分裂成多个激子的过程。当高能光子(能量大于半导体材料带隙的2倍)入射时,普通半导体材料将超过带隙的多余能量转化成热量损失,而MEG材料可将多余能量转化为额外的激子。产生激子倍增的前提条件如下:1.入射高能光子能量大于2倍的半导体材料带隙;2.高能光子可以产生额外激子,并将激子分离、提取、收集。理解激子倍增的关键在于理解材料内部的相互作用。

以无机量子点为例(图1a)。高能光子光照无机量子点后产生一个高能电子和一个空穴(过程Ⅰ),由于量子点内俄歇复合的抑制和库仑相互作用的增强,高能电子不再以辐射声子的形式冷却,而是在激发第二个电子(产生第二个空穴)后弛豫到导带底(过程Ⅱ),实现从一个激子到两个激子的倍增[5]。关于量子点激子倍增的机理,迄今为止有3种理论:1.高能激子处于单激子态与多激子态形成的相干叠加态[6]。目前,并没有证实该理论的实验报道。2. 价带电子间的库仑相互作用可以产生一个虚拟的双激子态,吸收一个光子可促使虚拟双激子态向真实双激子态过渡,从而产生了多重激子效应[7]。该理论的计算结果与部分实验结果一致。3.高能激子拥有额外的动能,可以通过碰撞,将这部分能量转化为额外的激子。尽管科研人员倾向于多重激子效应是半导体中俄歇复合的逆过程而非碰撞电离导致,但第一性原理的计算结果表明碰撞电离理论可以解释多重激子效应[8]。

以有机材料为例(图1b)。光照将分子激发到第一单线态,该分子将能量分享给邻近的基态分子,二者形成一个中间态(TT态)[9]。经过一段时间后, 中间态激子失去相干性, 扩散形成两个独立的三线态激子(T1 态)。理解从单线态转换到中间态的过程是揭示有机材料激子倍增的关键,也是被广泛争论的问题。关于从单线态到TT态的转换过程,目前主要有两种理论:1.激子首先由单线态转变为电荷转移态,再由电荷转移态生成TT态(图1b)[10]。2.单线态与TT态存在量子相干叠加关系,光激发单线态激子后,会与附近激子直接转换为TT态(图1b省去电荷转移态)[11]。目前对于单线态到中间态的具体转换过程,学术界仍存在分歧。

爱旭研发中心的工作人员对激子倍增技术在太阳电池提效方面也做了深入的研究,下期将对激子倍增技术在光伏领域的应用进行介绍,敬请期待!

参考文献:

[1] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys. 1961, 32, 510-519.

[2] R. J. Ellingson, M. C. Beard, J. C. Johnson et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 2005, 5, 865.

[3] M. C. Beard, K. P. Knutsen, P. R. Yu et al. Multiple Exciton Generation in Colloidal Silicon Nanocrystals, Nano Lett. 2007, 7 2506.

[4] M. C. Hanna, A. J. Nozik et al. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 2006, 100, 074510.

[5] 刘长菊,卢敏,苏未安等,纳米半导体中多重激子效应研究进展,物理学报,2018, 67, 2,027302.

[6] A. Shabaev, Al. L. Efros, A. J. Nozik, Multiexciton Generation by a Single Photon in Nanocrystals, Nano Lett. 2006, 6, 2856.

[7] V. I. Rupasov , V. I. Klimov, Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states, Phys. Rev. B 2007, 76, 125321.

[8]  G. Allan, C. Delerue, Role of impact ionization in multiple exciton generation in PbSe nanocrystals, Phys. Rev. B 2006, 73, 205423.

[9] 张博,张春峰,李希友,单线态分裂的超快光谱学研究,物理学报,2015,64,9,094210.

[10] E. C. Greyson, J. Vura-Weis, J. Michl, Maximizing Singlet Fission in Organic Dimers: Theoretical Investigation of Triplet Yield in the Regime of Localized Excitation and Fast Coherent Electron Transfer, J. Phys. Chem. B 2010, 114, 14168.

[11] W. L. Chan, M. Ligges, A. Jailaubekov et al. Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer, Science, 2011, 334, 1541.

作者:爱旭研发中心

点赞()
上一条:川西北气矿在公司第八届消防员(消防救援)职业技能竞赛中取得佳绩2024-06-13
下一条:前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(二)2025-07-11

相关稿件

前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(二) 2025-07-11
光伏产业篇 2022-02-21
技术创新让粮食与光伏兼得 2024-08-25
南昌黛妍美之术携手白鲸薇光,共启小红书达人探店活动 2024-07-22
发电玻璃成为光伏市场发展的新趋势 2021-08-31
国务院国有资产管理委员会 中国企业联合会 中国企业报 中国社会经济网 中国国际电子商务网 新浪财经 凤凰财经 中国报告基地 企业社会责任中国网 杭州网 中国产经新闻网 环球企业家 华北新闻网 和谐中国网 天机网 中贸网 湖南经济新闻网 翼牛网 东莞二手房 中国经济网 中国企业网黄金展位频道 硅谷网 东方经济网 华讯财经 网站目录 全景网 中南网 美通社 大佳网 火爆网 跨考研招网 当代金融家杂志 借贷撮合网 大公财经 诚搜网 中国钢铁现货网 证券之星 融易在线 2014世界杯 中华魂网 纳税人俱乐部 慧业网 商界网 品牌家 中国国资报道 金融界 中国农业新闻网 中国招商联盟 和讯股票 经济网 中国数据分析行业网 中国报道网 九州新闻网 投资界 北京科技创新企业诚信联盟网 中国白银网 炣燃科技 中企媒资网 中国石油化工集团 中国保利集团公司 东风汽车公司 中国化工集团公司 中国电信集团公司 华为技术有限公司 厦门银鹭食品有限公司 中国恒天集团有限公司 滨州东方地毯集团有限公司 大唐电信科技股份有限公司 中国诚通控股集团有限公司 喜来健医疗器械有限公司 中国能源建设股份有限公司 内蒙古伊利实业集团股份有限公司 中国移动通信集团公司 中国化工集团公司 贵州茅台酒股份有限公司